
0

The SlowMist Security Team received the team's application for smart contract security audit of the BitTorrent on

2021.12.05. The following are the details and results of this smart contract security audit:

Token Name :

BitTorrent

The contract address :

https://tronscan.org/#/contract/TAFjULxiVgT4qWk6UZwjqwZXTSaGaqnVp4

The audit items and results :

(Other unknown security vulnerabilities are not included in the audit responsibility scope)

NO. Audit Items Result

1 Replay Vulnerability Passed

2 Denial of Service Vulnerability Passed

3 Race Conditions Vulnerability Passed

4 Authority Control Vulnerability Passed

5 Integer Overflow and Underflow Vulnerability Passed

6 Gas Optimization Audit Passed

7 Design Logic Audit Passed

8 Uninitialized Storage Pointers Vulnerability Passed

9 Arithmetic Accuracy Deviation Vulnerability Passed

10 "False top-up" Vulnerability Passed

11 Malicious Event Log Audit Passed

12 Scoping and Declarations Audit Passed

1

NO. Audit Items Result

13 Safety Design Audit Passed

Audit Result : Passed

Audit Number : 0X002112060001

Audit Date : 2021.12.05 - 2021.12.06

Audit Team : SlowMist Security Team

Summary conclusion : This is a token contract that does not contain the tokenVault section. The total amount of

contract tokens remains unchangeable. SafeMath security module is used, which is a recommended approach. The

contract does not have the Overflow and the Race Conditions issue.

The source code:

//SlowMist// The contract does not have the Overflow and the Race Conditions issue

pragma solidity ^0.5.8;

interface ITRC20 {

 function transfer(address to, uint256 value) external returns (bool);

 function approve(address spender, uint256 value) external returns (bool);

 function transferFrom(address from, address to, uint256 value) external returns

(bool);

 function totalSupply() external view returns (uint256);

 function balanceOf(address who) external view returns (uint256);

 function allowance(address owner, address spender) external view returns

(uint256);

 event Transfer(address indexed from, address indexed to, uint256 value);

 event Approval(address indexed owner, address indexed spender, uint256 value);

}

//SlowMist// SafeMath security module is used, which is a recommended approach

library SafeMath {

 function add(uint256 a, uint256 b, string memory errorMessage) internal pure

returns (uint256) {

 uint256 c = a + b;

 require(c >= a, errorMessage);

 return c;

2

 }

 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure

returns (uint256) {

 require(b <= a, errorMessage);

 uint256 c = a - b;

 return c;

 }

}

contract BTT is ITRC20 {

 using SafeMath for uint256;

 string constant public name = "BitTorrent";

 string constant public symbol = "BTT";

 uint8 constant public decimals = 18;

 uint256 private totalSupply_;

 mapping(address => uint256) private balanceOf_;

 mapping(address => mapping(address => uint256)) private allowance_;

 constructor(address fund) public {

 totalSupply_ = 9900 * 1e8 * 1e18 * 1e3;

 balanceOf_[fund] = totalSupply_;

 emit Transfer(address(0x00), fund, totalSupply_);

 }

 function totalSupply() public view returns (uint256) {

 return totalSupply_;

 }

 function balanceOf(address guy) public view returns (uint256){

 return balanceOf_[guy];

 }

 function allowance(address src, address guy) public view returns (uint256){

 return allowance_[src][guy];

 }

 function approve(address guy, uint256 sad) public returns (bool) {

 allowance_[msg.sender][guy] = sad;

 emit Approval(msg.sender, guy, sad);

 return true;

 }

3

 function transfer(address dst, uint256 sad) public returns (bool) {

 return transferFrom(msg.sender, dst, sad);

 }

 function transferFrom(address src, address dst, uint256 sad)

 public returns (bool)

 {

 require(balanceOf_[src] >= sad, "src balance not enough");

 if (src != msg.sender && allowance_[src][msg.sender] != uint256(-1)) {

 require(allowance_[src][msg.sender] >= sad, "src allowance is not

enough");

 allowance_[src][msg.sender] = allowance_[src][msg.sender].sub(sad,

"allowance subtraction overflow") ;

 }

 balanceOf_[src] = balanceOf_[src].sub(sad, "from balance subtraction

overflow");

 balanceOf_[dst] = balanceOf_[dst].add(sad, "to balance addition overflow") ;

 emit Transfer(src, dst, sad);

 return true;

 }

 function increaseAllowance(address guy, uint256 addedValue) public returns (bool)

{

 require(guy != address(0));

 allowance_[msg.sender][guy] = allowance_[msg.sender][guy].add(addedValue,

"allowance addition overflow") ;

 emit Approval(msg.sender, guy, allowance_[msg.sender][guy]);

 return true;

 }

 function decreaseAllowance(address guy, uint256 subtractedValue) public returns

(bool) {

 require(guy != address(0));

 allowance_[msg.sender][guy] = allowance_[msg.sender]

[guy].sub(subtractedValue, "allowance subtraction overflow") ;

 emit Approval(msg.sender, guy, allowance_[msg.sender][guy]);

 return true;

 }

}

4

Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

5

6

